Муниципальное бюджетное общеобразовательное учреждение Русская средняя общеобразовательная школа имени Героя Советского Союза М.Н. Алексеева

Рассмотрено	Согласовано	Утверждаю
Протокол заседания методического объединения	Заместитель директора по учебной работе	Директор школы
оовединения	учестой рассте	<u> </u>
от 29.08.2023 №1	Бойко Л.А	приказ № 168-ОД от 29.08.2023
Сикоренко И.В.	29.08.2023	

Рабочая программа учебного предмета «Геометрия»

Уровень: среднее общее образование, 11 класс

Учитель: Дружиненко И.К.

Количество часов на год: Всего 35 часов; в неделю 1 час.

Рабочая программа разработана на основе федеральной рабочей программы по учебному предмету «Геометрия» базовый уровень, учебнометодического комплекса Л.С. Атанасян, образовательной программы школы.

2023-2024 учебный год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного курса «Геометрия» базового уровня для обучающихся 10 —11 классов разработана на основе Федерального государственного образовательного стандарта среднего общего образования, с учётом современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования. Реализация программы обеспечивает овладение ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития личности обучающихся.

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

Важность учебного курса геометрии на уровне среднего общего образования обусловлена практической значимостью метапредметных и предметных результатов обучения геометрии в направлении личностного развития обучающихся, формирования функциональной математической грамотности, изучения других учебных дисциплин. Развитие у обучающихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также качеств мышления, необходимых для адаптации в современном обществе.

Геометрия является одним из базовых предметов на уровне среднего общего образования, так как обеспечивает возможность изучения как дисциплин естественно-научной направленности, так и гуманитарной.

Логическое мышление, формируемое при изучении обучающимися понятийных основ геометрии и построении цепочки логических утверждений в ходе решения геометрических задач, умение выдвигать и опровергать гипотезы непосредственно используются при решении задач естественно-научного цикла, в частности из курса физики.

Умение ориентироваться в пространстве играет существенную роль во всех областях деятельности человека. Ориентация человека во времени и пространстве — необходимое условие его социального бытия, форма отражения окружающего мира, условие успешного познания и активного преобразования действительности. Оперирование пространственными образами объединяет разные виды учебной и трудовой деятельности,

является одним из профессионально важных качеств, поэтому актуальна задача формирования у обучающихся пространственного мышления как разновидности образного мышления — существенного компонента в подготовке к практической деятельности по многим направлениям.

Цель освоения программы учебного курса «Геометрия» на базовом уровне обучения — общеобразовательное и общекультурное развитие обучающихся через обеспечение возможности приобретения и использования систематических геометрических знаний и действий, специфичных геометрии, возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием геометрии.

Программа по геометрии на базовом уровне предназначена для обучающихся средней школы, не испытывавших значительных затруднений на уровне основного общего образования. Таким образом, обучающиеся на базовом уровне должны освоить общие математические умения, связанные со спецификой геометрии и необходимые для жизни в современном обществе. Кроме этого, они имеют возможность изучить геометрию более глубоко, если в дальнейшем возникнет необходимость в геометрических знаниях в профессиональной деятельности.

Достижение цели освоения программы обеспечивается решением соответствующих задач. Приоритетными задачами освоения курса «Геометрии» на базовом уровне в 10—11 классах являются:

- формирование представления о геометрии как части мировой культуры и осознание её взаимосвязи с окружающим миром;
- формирование представления о многогранниках и телах вращения как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира;
- формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения;
- овладение методами решения задач на построения на изображениях пространственных фигур;
- формирование умения оперировать основными понятиями о многогранниках и телах вращения и их основными свойствами;
- овладение алгоритмами решения основных типов задач; формирование умения проводить несложные доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием;
- развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления;

• формирование функциональной грамотности, релевантной геометрии: умение распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке геометрии и создавать геометрические модели, применять освоенный геометрический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

Отличительной особенностью программы является включение в курс стереометрии в начале его изучения задач, решаемых на уровне интуитивного познания, и определённым образом организованная работа над ними, что способствуют развитию логического и пространственного мышления, стимулирует протекание интуитивных процессов, мотивирует к дальнейшему изучению предмета.

Предпочтение отдаётся наглядно-конструктивному методу обучения, то есть теоретические знания имеют в своей основе чувственность предметнопрактической деятельности. Развитие пространственных представлений у учащихся в курсе стереометрии проводится за счёт решения задач на создание пространственных образов и задач на оперирование пространственными образами. Создание образа проводится с опорой на наглядность, а оперирование образом — в условиях отвлечения от наглядности, мысленного изменения его исходного содержания.

Основные содержательные линии курса «Геометрии» в 10–11 классах: «Многогранники», «Прямые и плоскости в пространстве», «Тела вращения», «Векторы и координаты в пространстве». Формирование логических умений распределяется не только по содержательным линиям, но и по годам обучения на уровне среднего общего образования.

Содержание образования, соответствующее предметным результатам рабочей программы, распределённым ПО годам обучения, структурировано таким образом, чтобы овладение геометрическими понятиями и навыками осуществлялось последовательно и поступательно, с соблюдением принципа преемственности, чтобы новые знания включались в общую систему геометрических представлений обучающихся, расширяя и углубляя её, образуя прочные множественные связи.

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

Базисный учебный (общеобразовательный) план на изучение геометрии в 11 классе основной школы отводит 1 час в неделю в течение учебного года обучения, всего 35 уроков в год.

На изучение геометрии отводится 1 час в неделю в 11 классе, всего за год обучения - 35 учебных часа.

1 Повторение (3 ч).

2.Векторы в пространстве (6ч).

Векторы в пространстве. Коллинеарные и компланарные векторы. Параллельный перенос. Параллельное проектирование и его свойства. Параллельные проекции плоских фигур. Изображение пространственных фигур на плоскости. Сечения многогранников. Исторические сведения.

Цель: сформировать у учащихся понятие вектора в пространстве; рассмотреть основные операции над векторами.

3. Метод координат в пространстве (9 ч).

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Цель: введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом решения задач. Сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве.

В ходе изучения темы целесообразно использовать аналогию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осознанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геометрии

4. Цилиндр, конус, шар (7ч)

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

Цель: дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометрических тел. В ходе знакомства с теоретическим материалом темы значительно развиваются пространственные представления учащихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круглых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм и пирамид. Решать большое количество задач, что позволяет продолжить работу по формированию логических и графических умений.

5. Объем и площадь поверхности (5 ч).

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

Цель: продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Понятие объема вводить по аналогии с понятием площади плоской фигуры и формулировать основные свойства объемов. Существование и единственность

объема тела в школьном курсе математики приходится принимать без доказательства, так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты

устанавливать, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.

5.Повторение (3 ч.)

Цель: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения программы учебного предмета «Математика» характеризуются:

Гражданское воспитание:

сформированностью гражданской позиции обучающегося как активного и ответственного члена российского общества, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.), умением взаимодействовать с социальными институтами в соответствии с их функциями и назначением.

Патриотическое воспитание:

сформированностью российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках, технологиях, сферах экономики.

Духовно-нравственного воспитания:

осознанием духовных ценностей российского народа; сформированностью нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного; осознанием личного вклада в построение устойчивого будущего.

Эстетическое воспитание:

эстетическим отношением к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений; восприимчивостью к математическим аспектам различных видов искусства.

Физическое воспитание:

сформированностью умения применять математические знания в интересах здорового и безопасного образа жизни, ответственного отношения к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); физического совершенствования, при занятиях спортивно-оздоровительной деятельностью.

Трудовое воспитание:

готовностью к труду, осознанием ценности трудолюбия; интересом к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умением совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы; готовностью и способностью к математическому образованию и самообразованию на протяжении всей жизни; готовностью к активному участию в решении практических задач математической направленности.

Экологическое воспитание:

сформированностью экологической культуры, пониманием влияния социально-экономических процессов на состояние природной и социальной среды, осознанием глобального характера экологических проблем; ориентацией на применение математических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды.

Ценности научного познания:

сформированностью мировоззрения, соответствующего современному уровню развития науки и общественной практики, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; готовностью осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения программы учебного предмета «Математика» характеризуются овладением универсальными познавательными действиями, универсальными коммуникативными действиями, универсальными регулятивными действиями.

1) Универсальные **познавательные** действия, обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

- выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;
- выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;
- делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
- проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные суждения и выводы;
- выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
- проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
- прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

• выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;

- выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- структурировать информацию, представлять её в различных формах, иллюстрировать графически;
- оценивать надёжность информации по самостоятельно сформулированным критериям.
- 2) Универсальные коммуникативные действия, обеспечивают сформированность социальных навыков обучающихся.

Общение:

- воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
- в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Сотрудничество:

- понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;
- участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы» и иные); выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
- 3) Универсальные **регулятивные** действия, обеспечивают формирование смысловых установок и жизненных навыков личности.

Самоорганизация:

• составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей,

аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов; владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Оперировать понятиями: цилиндрическая поверхность, образующие цилиндрической поверхности; цилиндр; коническая поверхность, образующие конической поверхности, конус; сферическая поверхность.

Распознавать тела вращения (цилиндр, конус, сфера и шар).

Объяснять способы получения тел вращения.

Классифицировать взаимное расположение сферы и плоскости.

Оперировать понятиями: шаровой сегмент, основание сегмента, высота сегмента; шаровой слой, основание шарового слоя, высота шарового слоя; шаровой сектор.

Вычислять объёмы и площади поверхностей тел вращения, геометрических тел с применением формул.

Оперировать понятиями: многогранник, вписанный в сферу и описанный около сферы; сфера, вписанная в многогранник или тело вращения.

Вычислять соотношения между площадями поверхностей и объёмами подобных тел.

Изображать изучаемые фигуры от руки и с применением простых чертёжных инструментов.

Выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу; строить сечения тел вращения.

Извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках.

Оперировать понятием вектор в пространстве.

Выполнять действия сложения векторов, вычитания векторов и умножения вектора на число, объяснять, какими свойствами они обладают.

Применять правило параллелепипеда.

Оперировать понятиями: декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные и компланарные векторы.

Находить сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам.

Задавать плоскость уравнением в декартовой системе координат.

Применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме.

Решать простейшие геометрические задачи на применение векторно-координатного метода.

Решать задачи на доказательство математических отношений и нахождение геометрических величин по образцам или алгоритмам, применяя известные методы при решении стандартных математических задач.

Применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач.

Приводить примеры математических закономерностей в природе и жизни, распознавать проявление законов геометрии в искусстве.

Применять полученные знания на практике: анализировать реальные ситуации и применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры; решать практические задачи, связанные с нахождением геометрических величин.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

No	НАЗВАНИЕ РАЗДЕЛА	Кол-во часов
1	Повторение.	3
2	Векторы в пространстве.	6
3	Метод координат в пространстве.	9
4	Цилиндр, конус и шар.	7
3	Объёмы тел.	5
4	Обобщающее повторение. Решение задач.	5
	ИТОГО:	35

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

No	Nº ∐ala		Тема урока	Количество	Конт
	По плану	Фактически		часов	роль
Повторение курса 10 класса 3ч					

1	Сентябрь 05	Параллельность прямых и плоскостей. Перпендикулярность прямых и плоскостей.	1	
2	12	Многогранники	1	
3	19	Входная контрольная работа	1	K/P
		Векторы в пространстве. 6ч		
4	26	Понятие вектора. Равенство векторов.	1	
5	Октябрь 03	Сложение и вычитание векторов. Сумма нескольких векторов.	1	
6	10	Умножение вектора на число. Компланарные векторы.	1	
7	17	Разложение вектора по трём некомпланарным векторам.	1	
8	24	Контрольная работа №2 по теме «Векторы в пространстве»	1	
9	Ноябрь 07	Правило параллелепипеда.	1	K/P
		Метод координат в пространстве 9ч		
10	14	Прямоугольная система координат в пространстве. Угол между векторами.	1	
11	21	Координаты вектора. Связь между координатами векторов и координатами точек.	1	
12	28	Простейшие задачи в координатах.	1	
13	Декабрь 05	Решение задач: Метод координат в пространстве	1	
14	12	Скалярное произведение векторов.	1	
15	19	Решение задач на нахождение угла между векторами и скалярное произведение векторов.	1	
16	26	Контрольная работа №3 по теме: «Метод координат в пространстве»	1	

17	Январь 09	Центральная симметрия. Осевая симметрия	1	
18	16	Зеркальная симметрия. Параллельный перенос	1	К/Р
1	·	Цилиндр, конус, шар 7ч		
19	23	Понятие цилиндра. Площадь поверхности цилиндра	1	
20	30	Понятие конуса. Площадь поверхности конуса.	1	
21	Февраль 06	Понятие усеченного конуса. Площадь поверхности усеченного конуса	1	
22	13	Сфера и шар. Уравнение сферы	1	
23	20	Взаимное расположение сферы и плоскости.	1	
24	27	Касательная плоскость к сфере. Площадь сферы	1	
25	Март 05	Контрольная работа №4 по теме «Цилиндр, конус, шар»	1	K/P
		Объемы тел. 5ч		
26	12	Понятие объема. Объем прямоугольного параллелепипеда	1	
27	26	Объем прямой призмы. Объем наклонной призмы,	1	
28	Апрель 02	Теорема об объеме цилиндра .Объём пирамиды и конуса	1	
29	09	Объем шара Объем шарового сегмента, Площадь сферы	1	
30	16	Решение задач: Метод координат в пространстве	1	K/P
		Обобщающее повторение курса геометрии 5ч		
31	23	Итоговая контрольная работа	1	

32	30	: Метод координат в пространстве	1	
33	Май 07	Решение задач: Метод координат в пространстве	1	
34	14	Объем прямой призмы, цилиндра	1	K/P
35	21	Площадь сферы. Объем шара, объем шарового сегмента, шарового слоя и шарового сектора	1	

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА